التعليمي

متوازي الأضلاع

  • ١ متوازي الأضلاع
  • ٢ مساحة متوازي الأضلاع
  • ٣ محيط متوازي الأضلاع
  • ٤ كيفيّة رسم متوازي الأضلاع

متوازي الأضلاع

متوازي الأضلاع أحد الأشكال الهندسيّة الرُّباعية الأضلاع؛ فله أربعة أضلاعٍ كلّ ضلعين متقابلين متطابقين ومتوازيين معاً أو متطابقين أو متوازيين فقط، وله أربعة زوايا، ويبلغ مجموع زوايا متوازي الأضلاع 360° كأيّ شكلٍ رُباعيٍّ، وقياس كلّ زاويتين متقابلتين متساويتين، وله قطران يتقاطعان في منتصف الشكل وينصفان بعضهما البعض؛ فكل قُطرٍ يصل بين الزاويتين المتقابلتين، ومن خصائص متوازي الأضلاع أنْ تكون كلّ زاويتين واقعتين على ضلعٍ واحدٍ مجموعهما 180°، ويُطلق على متوازي الأضلاع اسمٌ آخر هو شبيه المعين.

مساحة متوازي الأضلاع

متوازي الأضلاع من الأشكال الثنائيّة الأبعاد؛ فيُرسم في المستوى الديكارتيّ على محورين هما المحور السينيّ والمحور الصاديّ، وكل شكلٍ ثنائي الأبعاد له مساحةٌ وقد اشتُقت مساحة متوازي الأضلاع من مساحة كلٍ من المستطيل والمثلث؛ فمتوازي الأضلاع لو جزّأ إلى جزأين هما المثلث والمستطيل، ليستنتج علماء الرياضيات القانون التالي: مساحة متوازي المستطيلات= طول القاعدة× طول الارتفاع السَّاقط على القاعدة

  • مثال للتوضيح:

متوازي أضلاع طول أحد أضلاعه 4 سم، وطول الضلع الآخر 5.5 سم، احسب مساحة متوازي الأضلاع؟

  • الحل:
  • نحتاج أولاً إلى رسم الشكل على الورق بالأبعاد المُعطاة في السؤال.
  • نقوم باسقاط عمود من طرف الزاوية العُليا للشكل على الخط الأفقيّ الذي يُمثل القاعدة للشكل.
  • باستخدام المسطرة نقيس طول هذا الإرتفاع، في هذا المِثال يساوي 3 سم.
  • نطبق قانون المساحة= طول القاعدة× الارتفاع.

المساحة= 4×3. المساحة= 12 سم مربع.

محيط متوازي الأضلاع

المحيط لأي شكلٍ هندسيٍّ هو مجموع أطوال أضلاعه، ويُقاس بوحدة الأطوال. محيط متوازي الأضلاع= مجموع أطوال الأضلاع

  • مثال للتوضيح:

متوازي الأضلاع طول أحد أضلاعه 4 سم وطول الضلع الآخر 5 سم، احسب محيطه؟

  • الحل:

هذا الشكل كما يتضح من أبعاده ومُعطيات السؤال أنّه من النّوع الذي يكون فيه كل ضلعين متقابلين لهما نفس الطول؛ وعليه فأطوال الأضلاع للشكل هي على التوالي:4،5،4،5 سم؛ إذًا محيط متوازي الأضلاع=مجموع الأطوال. محيط متوازي الأضلاع= 4+5+4+5. محيط متوازي الأضلاع= 14 سم.

كيفيّة رسم متوازي الأضلاع

لرسم متوازي الأضلاع بمعرفة طول ضلعيه المتجاورين وقياس زاويةٍ نتبع الخطوات التالية:

  • ارسم قطعة مستقيمة بقياس أحد الضلعين، لنفرض مثلًا 3 سم.
  • ضع المنقلة بحيث تكون نقطة منتصفها على أحد طرفيّ القطعة المرسومة، وحدد قياس الزاوية، مثلًا 80°.
  • صل بين طرف القطعة المستقيمة ومكان تحديد قياس الزاوية بطول الضلع الآخر، مثلًا 4 سم.
  • ضع الفرجار عند الطرف الحر للقطعة المستقيمة ذات الطول 4 سم، ثُمّ افتح الفرجار بطول 3 سم وارسمْ قوساً.
  • ضع الفرجار عند الطرف الحر للقطعة المستقيمة ذات الطول 3 سم، ثُمّ افتح الفرجار بطول 4 سم وارسمْ قوسًا يتقاطع مع القوس الأول في نقطةٍ.
  • صل نقطة تقاطع القوسين مع الطرفين الحريّن للقطعتين المستقيمتين باستخدام المسطرة.
  • بإغلاق الشكل نكون قد حصلنا على متوازي الأضلاع

زر الذهاب إلى الأعلى